If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(-16x^2)+2x=0
We get rid of parentheses
-16x^2+2x=0
a = -16; b = 2; c = 0;
Δ = b2-4ac
Δ = 22-4·(-16)·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2}{2*-16}=\frac{-4}{-32} =1/8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2}{2*-16}=\frac{0}{-32} =0 $
| 10x^2-62x+120=0 | | 9=-2/7d+5 | | 45=5/3x+7 | | -5x-25=5x-25 | | X2+4x-5=20 | | 12x+15=3(4x-6) | | 5a^2+25a+30=0 | | 5x+7x-4=20 | | 4x+6=7x-14 | | 100/n=19 | | (3x-4)^2=4(x+3) | | X-4÷10=3/5-x-5÷15 | | x+2x+3x=-36 | | 240=-12x | | 5x-0=3x+4 | | 7a-5a=20 | | x*0.15=50 | | 1+x+10=2(x+4)-4(-3+x) | | 3.7x=0 | | 5x-6/x+3=2 | | (5+2i)(3-6i)=0 | | (4-5i)-(7+3i)=0 | | 192=-4(1+7n) | | (3+9i)+(12-4i)=0 | | 3x^2+15=50 | | 7+3x=2x+ | | 6^x=39.7 | | 41.2–d=1.42 | | M+2=4m-m² | | 1/3x=4/92x+3 | | 0.5×x^2=x^2-2 | | 2x=1=7 |